Dispersive estimates for Schrödinger operators in dimensions one and three
نویسندگان
چکیده
A “resonance” here is defined to take place iff W (0) = 0 where W (λ) is the Wronskian of the two Jost solutions at energy λ2, see the following section. It is known that the spectrum of H is purely absolutely continuous on (0,∞) under our assumptions (V ∈ L1(R) suffices for that) so that Pac is the same as the projection onto the orthogonal complement of the bound states. For the case of three dimensions we prove the following result.
منابع مشابه
A Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions
In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class C, α < n−3 2 , for which the solutions to the linear Schrödinger equation in R, −i∂tu = −∆u+ V u, u(0) = f, do not obey the usual L → L∞ dispersive estimate. This contrasts with known results in dimensions n ≤ 3, where a pointwise decay condition on V is generally sufficient to imply dispe...
متن کاملDispersive Estimates for the Schrödinger Equation for C
We investigate L → L∞ dispersive estimates for the Schrödinger equation iut − ∆u + V u = 0 in odd dimensions greater than three. We obtain dispersive estimates under the optimal smoothness condition for the potential, V ∈ C(n−3)/2(Rn), in dimensions five and seven. We also describe a method to extend this result to arbitrary odd dimensions.
متن کاملWave Operator Bounds for 1-dimensional Schrödinger Operators with Singular Potentials and Applications
Boundedness of wave operators for Schrödinger operators in one space dimension for a class of singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented to, for example, dispersive estimates and commutator bounds.
متن کامل